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Abstract The combination of the group ring setting with the methods of character
theory allows an elegant and powerful analysis of various combinatorial structures,
via their character sums. These combinatorial structures include difference sets,
relative difference sets, partial difference sets, bent functions, hyperplanes, spreads,
and LP-packings. However, the literature on these techniques often relies on peculiar
conventions and implicit understandings that are not always readily accessible to
those new to the subject.While there aremany excellent advanced sources describing
these techniques, we are not aware of an expository paper at the introductory level
that articulates the commonly used “tricks of the trade”. We attempt to remedy this
situation by means of illustrative examples, explicit discussion of conventions, and
instructive proofs of fundamental results.
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Overview

The combination of character theory and group rings provides a powerful tool for
analyzing a great variety of discrete structures occurring in design theory [5, 10, 17,
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18, 20, 22, 26, 29], discrete geometry [21], finite geometry [8, 9, 24], graph theory
[22, 24], highly nonlinear functions [27, 28], and number theory [19]. There aremany
excellent advanced sources describing these techniques, including [2, Chapter VI],
[15], [16], [25], and [30]. However, those unfamiliar with the subject face the obstacle
that the literature often relies on peculiar conventions and implicit understandings that
are typically mentioned only briefly. Our intention in this introductory expository
paper is to communicate the commonly used “tricks of the trade” by means of
illustrative examples, explicit discussion of conventions, and instructive proofs of
fundamental results.

In Section 1 we introduce the group ring and show how to concisely express a
difference set, a relative difference set, and a partial difference set in this setting. In
Section 2we define the characters of an abelian group using an explicit computational
approach. The combination of a character with a group ring element gives a character
sum, andwe showvia extended examples howdifference sets and their variants can be
characterized in terms of their character sums. We develop the required fundamental
results of character theory as needed, using the proofs to bring to light details and
potential pitfalls often omitted. In Section 3 we use character sums to characterize
certain collections of subsets of an abelian group whose mutual properties play a
fundamental role in the construction of difference sets and related structures. These
collections are: the hyperplanes of an elementary abelian group; a spread of an
elementary abelian group; and an LP-packing of partial difference sets in an abelian
group.

1 Group ring

Throughout this paper, we consider only finite groups. The definitions in this section
are not restricted to abelian groups (although the examples are).Wewrite the identity
of the group G as 1G. We use the notation {{. . . }} to represent the elements of a
multiset. We begin with a compact way of representing a set or multiset of elements
of a group.

Example 1.1 (Set)
Let Z3 × Z3 = 〈(1, 0), (0, 1)〉, and let A = {(0, 0), (1, 2), (2, 1)} be a set of

elements ofZ3×Z3. We represent the setA by the expression (0, 0)+(1, 2)+(2, 1),
in which the symbol ‘+’ is used to concatenate the elements of A in a formal sum
but does not refer to the addition operation of the group Z3 × Z3. It is (perhaps
unfortunately) common to abuse notation by writing A = (0, 0) + (1, 2) + (2, 1),
using the same symbolA for the expression (0, 0)+(1, 2)+(2, 1) as for the associated
set.

Example 1.2 (Multiset)
Let Z7 = 〈g〉, and let B = {{1Z7

, 1Z7
, 1Z7

, g, g4, g4, g5}} be a multiset of
elements of Z7. We represent the multiset B by the expression
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1Z7
+ 1Z7

+ 1Z7
+ g + g4 + g4 + g5 = 3 · 1Z7

+ g + 2g4 + g5,

using the symbol + for concatenation of elements as before, and also combining
the three copies of 1Z7

as 3 · 1Z7
and the two copies of g4 as 2g4. Since there is no

confusion with the identity element of a group other than Z7, we may replace 1Z7
by

1 in this expression so that 3 · 1Z7
is replaced by 3 · 1 = 3 to give 3 + g + 2g4 + g5.

The use of a formal sum to represent a set or multiset of group elements can be
formalized in the following way. Let Z be the integer ring and let G be a group. The
group ring Z[G] is a Z-module with a basis consisting of all elements of G, so that

Z[G] =
{∑
g∈G

agg | ag ∈ Z
}
.

The integer ag is called the coefficient of g in the formal sum
∑
g∈G agg. We shall

see that the algebraic structure of the group ring Z[G] provides a powerful means
of studying (multi)sets of elements of G. Although negative coefficients ag are
permitted in Z[G], we shall consider only group ring elements whose coefficients
are all non-negative in order to maintain the association with multisets of elements
of G. The group operation of G is sometimes written additively (as in Example 1.1)
and sometimes multiplicatively (as in Example 1.2), according to context.

We firstly show that the sum and product of elements of the group ring Z[G] have
a natural interpretation in terms of their associated multisets.

Example 1.3 (Sum and product)
Let G = Z4 × Z9 = 〈x, y〉 and let A,B be the multisets of elements of G given

by

A = 3x+ 2x3y8 + y6,

B = 2 + x+ 5x2y7

(where, as mentioned above, we abuse notation by not distinguishing between a
multiset and its associated group ring element in Z[G]).

The sum of A and B in Z[G] is the group ring element

A+B = (3x+ 2x3y8 + y6) + (2 + x+ 5x2y7)

= 2 + 4x+ y6 + 5x2y7 + 2x3y8,

whose associated multiset is the multiset union A ∪B.
The product of A and B in Z[G] is the group ring element

AB = (3x+ 2x3y8 + y6)(2 + x+ 5x2y7)

= 6x+ 4x3y8 + 2y6 + 3x2 + 2x4y8 + xy6 + 15x3y7 + 10x5y15 + 5x2y13

= 6x+ 4x3y8 + 2y6 + 3x2 + 2y8 + xy6 + 15x3y7 + 10xy6 + 5x2y4

= 6x+ 4x3y8 + 2y6 + 3x2 + 2y8 + 11xy6 + 15x3y7 + 5x2y4,
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obtained by expanding the formal product and then applying the group relations
x4 = y9 = 1. The associated multiset is the sumset {{ab | a ∈ A, b ∈ B}}.

Example 1.3 illustrates how to form the sum and product of elements of the group
ring Z[G]. In general, for elements A =

∑
g∈G agg and B =

∑
g∈G bgg of Z[G],

we have

A+B =
(∑
g∈G

agg
)
+
(∑
g∈G

bgg
)
=
∑
g∈G

(ag + bg)g,

AB =
(∑
k∈G

akk
)(∑

h∈G

bhh
)
=
∑
h∈G

∑
k∈G

akbhkh =
∑
h∈G

∑
g∈G

agh−1bhg

=
∑
g∈G

(∑
h∈G

agh−1bh
)
g.

We shall see that replacing each element of a multiset by its group inverse is very
useful in describing difference sets and their variants. We illustrate this process in
the following example and then introduce a general definition.

Example 1.4 Consider the multiset B = {{1, 1, 1, g, g4, g4, g5}} of Z7 = 〈g〉 given
in Example 1.2. Replacing each element of B by its group inverse gives the multiset
{{1, 1, 1, g6, g3, g3, g2}}. The corresponding group ring elements are B = 3+ g +
2g4+ g5 andB(−1) = 3+ g6+2g3+ g2. Note that to formB(−1) directly from the
group ring element B, we replace each group element in B by its inverse but leave
each coefficient unchanged.

The group ring element A = (0, 0) + (1, 2) + (2, 1) of Z[Z3 × Z3] given in
Example 1.1 likewise has A(−1) = (−(0, 0)) + (−(1, 2)) + (−(2, 1)) = (0, 0) +
(2, 1)+(1, 2), so in this caseA(−1) = A. Note that the symbol ‘−’ in this calculation
means the inverse in the group Z3 × Z3, and not the group ring coefficient −1.

In general, letA =
∑
g∈G agg be an element of the group ring Z[G]. ThenA(−1)

is the element
∑
g∈G agg

−1 of Z[G]. We now show how the group ring element
A(−1) allows a concise characterization of a difference set, a relative difference set,
and a partial difference set.

Example 1.5 (Difference set)
Let G = Z15 = 〈g〉 and let A = {g, g2, g3, g5, g6, g9, g11} ⊂ G. A straightfor-

ward calculation shows that the multiset

{{xy−1 | x, y ∈ A, x 6= y}} = {{g(g2)−1, g(g3)−1, . . . g11(g9)−1}}

of “differences” of distinct elements of A comprises each of the group ele-
ments g, g2, g3, . . . , g14 exactly 3 times. By the definition of A(−1), the multiset
{{xy−1 | x, y ∈ A}} of differences of (not necessarily distinct) elements of A can
be represented as AA(−1). The observed property of A can therefore be concisely
represented as
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AA(−1) = {{xx−1 | x ∈ A}}
⋃
{{xy−1 | x, y ∈ A, x 6= y}}

= 7 · 1G + 3(g + g2 + g3 + · · ·+ g14).

Following the usual abuse of notation, the entire group G = {1G, g, g2, . . . , g14} is
represented by the group ring element G = 1G + g + g2 + · · ·+ g14 so we obtain

AA(−1) = 7 · 1G + 3(G− 1G) = 7 + 3(G− 1) in Z[G],

in which the identity of G appears 7 times and each nonidentity element appears
exactly 3 times. The subset A is called a (15, 7, 3) difference set in G: the group G
has order 15, the subset A has size 7, and each nonidentity element appears exactly
3 times in the multiset of differences. When the group is written in multiplicative
notation, as here, a more appropriate name might be “quotient set”; however, the
name “difference set” has been preserved ever since its introduction in relation to
abelian groups written in additive notation.

In general, letG be a group of order v and letD be a k-subset ofG. The subsetD
is a (v, k, λ) difference set in G if the multiset of differences of distinct elements of
D contains each nonidentity element of G exactly λ times. In group ring notation,
this is equivalent to

DD(−1) = k + λ(G− 1) in Z[G]. (1)

A simple counting argument shows that the parameters v, k, λ must satisfy

k(k − 1) = λ(v − 1).

Example 1.6 (Relative difference set)
Let G = Z4 × Z4 = 〈a, b〉, let N = 〈a2, b2〉 be the unique subgroup of G

isomorphic to Z2×Z2, and letB = {1, a, b, a3b3} ⊂ G. The multiset of differences
of distinct elements of B is

{{xy−1 | x, y ∈ B, x 6= y}} = {{1(a)−1, 1(b)−1, . . . , a3b3(b)−1}}
= {{a3, b3, ab, a, ab3, a2b, b, a3b, ab2, a3b3, a2b3, a3b2}}
= G \ {1, a2, b2, a2b2}
= G \N,

comprising each element ofG\N exactly once. In group ring notation, this property
can be represented as

BB(−1) = {{xx−1 | x ∈ B}}
⋃
{{xy−1 | x, y ∈ B, x 6= y}}

= 4 + (G−N) in Z[G],

where we may write the group ring element corresponding to the setG\N asG−N
because N is a subset of G. (Likewise, the multiset difference S \ T of multisets S
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and T can be written as S − T in the group ring, provided that T is a multi-subset
of S.) The subset B is called a relative difference set in G relative to N .

In general, let G be a group of order mn, let N be a subgroup of G of order n,
and let R be a k-subset of G. The subset R is an (m,n, k, λ) relative difference set
in G relative to N if the multiset of differences of distinct elements of R contains
each element of G \N exactly λ times. In group ring notation, this is equivalent to

RR(−1) = k + λ(G−N) in Z[G]. (2)

The subgroup N is called the forbidden subgroup, because none of its nonidentity
elements appears in the multiset of differences. A simple counting argument shows
that the parametersm,n, k, λ must satisfy

k(k − 1) = λn(m− 1).

The subset B described above is a (4, 4, 4, 1) relative difference set in Z4 × Z4 =
〈a, b〉 relative to the subgroup 〈a2, b2〉 ∼= Z2 × Z2.

The special case of an (m, 1, k, λ) relative difference set inG relative to the trivial
subgroup {1G} reduces to a (m, k, λ) difference set in G.

Example 1.7 (Partial difference set)
Let G = Z3 × Z3 = 〈x, y〉, and let C = {x, x2, xy, x2y2} ⊂ G. The multiset of

differences of distinct elements of C is

{{x2, y2, x2y, x, xy2, y, y, x2y, x2y2, xy2, y2, xy}}

= {{x, x2, xy, x2y2}}
⋃
{{y, y, x2y, x2y, y2, y2, xy2, xy2}},

comprising each element of C exactly once and each nonidentity element of G \ C
exactly twice. In group ring notation, we have

CC(−1) = 4 + (x+ x2 + xy + x2y2) + 2(y + x2y + y2 + xy2)

= 4 + C + 2(G− 1− C) in Z[G].

The subset C is called a (9, 4, 1, 2) partial difference set inG: the groupG has order
9, the subset C has size 4, and the parameters 1 and 2 occur as multiplicities in the
multiset of differences.

In general, let G be a group of order v and let D be a k-subset of G not con-
taining 1G. The subset D is a (v, k, λ, µ) partial difference set in G if the multiset
of differences of distinct elements of D contains each element of D exactly λ times
and each nonidentity element of G \D exactly µ times. Equivalently,

DD(−1) = k + λD + µ(G− 1−D) in Z[G]. (3)

(The condition 1G /∈ D is not restrictive: see [22, p. 222].) A simple counting
argument shows that the parameters v, k, λ, µ must satisfy
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k(k − 1) = λk + µ(v − 1− k).

For an arbitrary g ∈ G and group ring element A in Z[G], elements g and g−1
have equal multiplicity in the multiset AA(−1) = {{xy−1 | x, y ∈ A}} because
xy−1 = g holds if and only if yx−1 = g−1. Therefore from (3) we see [22, Prop. 1.2]
that

λ 6= µ =⇒ D(−1) = D.

In the case λ = µ the partial difference set reduces to a (v, k, λ) difference set in G,
but this does not imply D(−1) 6= D: when G is the elementary abelian 2-group,
there are examples of partial difference sets D with λ = µ [6] that necessarily
satisfy D(−1) = D.

The group ring can also be used to show that the projection of a relative difference
to a quotient group is another relative difference set, and to constrain the projection
of a difference set.

Example 1.8 (Projection of relative difference set)
Consider the (4, 4, 4, 1) relative difference set B = {1, a, b, a3b3} in G = Z4 ×

Z4 = 〈a, b〉 relative to the subgroupN = 〈a2, b2〉 ∼= Z2×Z2 given in Example 1.6.
Then U = 〈a2〉 ∼= Z2 is a normal subgroup of G and of N , so we may form the
quotient groups G/U = {U, aU, bU, abU, b2U, ab2U, b3U, ab3U} ∼= Z2 × Z4 and
N/U = {U, b2U} ∼= Z2.

Let ρ : G→ G/U be the canonical projection given by ρ(g) = gU . In the group
ring Z[G] we have B = 1 + a+ b+ a3b3, and in the group ring Z[G/U ] we have

ρ(B) = ρ(1 + a+ b+ a3b3)

= ρ(1) + ρ(a) + ρ(b) + ρ(a3b3)

= U + aU + bU + ab3U.

We then calculate in Z[G/U ] that

ρ(B)ρ(B)(−1) = (U + aU + bU + ab3U)(U + aU + b3U + abU)

= 4U + 2(aU + bU + abU + ab2U + b3U + ab3U)

= 4 + 2(G/U −N/U)

using that 4U = 4 · 1G/U = 4 in Z[G/U ]. Therefore, by (2) we see that the subset
ρ(B) of G/U is a (4, 2, 4, 2) relative difference set in G/U ∼= Z2 × Z4 relative to
N/U ∼= Z2.

Example 1.9 (Projection of difference set)
Consider the (15, 7, 3) difference set A = {g, g2, g3, g5, g6, g9, g11} in G =

Z15 = 〈g〉 given in Example 1.5. Then U = 〈g5〉 ∼= Z3 is a normal subgroup of G,
so we may form the quotient group G/U = {U, gU, g2U, g3U, g4U} ∼= Z5.

Let ρ : G→ G/U be the canonical projection given by ρ(g) = gU . In the group
ring Z[G/U ] we have
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ρ(A) = ρ(g + g2 + g3 + g5 + g6 + g9 + g11)

= gU + g2U + g3U + U + gU + g4U + gU

= U + 3gU + g2U + g3U + g4U,

and so

ρ(A)ρ(A)(−1) = (U + 3gU + g2U + g3U + g4U)(U + 3g4U + g3U + g2U + gU)

= 13U + 9(gU + g2U + g3U + g4U)

= 13 · 1G/U + 9(G/U − 1G/U )

= 13 + 9(G/U − 1) (4)
= 4 + 9G/U.

Although (4) has the same form as (1), the projection ρ(A) is not a difference set
in G/U : it corresponds to a multiset of elements of G/U but not a subset of G/U ,
because its group ring coefficients do not all lie in {0, 1}.

We shall extend Examples 1.8 and 1.9 to a general relative difference set and
difference set in Examples 1.11 and 1.12. We first state a result that illustrates an
important advantage of working with group rings: the multiplicity of elements of a
group G is preserved under the projection mapping ρ to the quotient group G/U .

Result 1.10 Let U be a normal subgroup of a group G and let ρ : G→ G/U be the
canonical projection. Then

ρ(G) = |U |(G/U) in the group ring Z[G/U ].

Result 1.10 might initially be surprising: the projection ρ is a surjective mapping
from G to G/U , so from the viewpoint of mappings one might expect to obtain
ρ(G) = G/U . However, in the group ring Z[G/U ] we regard the expression ρ(G)
as the image under ρ of the sum of elements of G, and the expression G/U as the
sum of elements of G/U . Since ρ maps all |U | elements of a coset gU in G to
the same element in G/U , we see that ρ(G) contains each element of G/U with
multiplicity |U |.

Example 1.11 (Projection of general relative difference set)
Let R be an (m,n, k, λ) relative difference set in a group G relative to a sub-

group N , let U be a normal subgroup of G and of N , and let ρ : G→ G/U be the
canonical projection. SinceN is the forbidden subgroup, every two distinct elements
r1, r2 ofR satisfy r1r−12 /∈ N and so r1r−12 /∈ U . Therefore ρ(r1) 6= ρ(r2), so ρ(R)
is a subset (not a multi-subset) of G/U .

Since ρ is a homomorphism, we have

ρ(RR(−1)) = ρ(R)ρ(R(−1)) = ρ(R)ρ(R)(−1)

(as can be verified by writing R =
∑
g∈G agg ∈ Z[G] and expanding).
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Apply ρ to both sides of (2) to obtain in the group ring Z[G/U ] that

ρ(R)ρ(R)(−1) = ρ(k · 1G) + λ(ρ(G)− ρ(N))

= k · 1G/U + λ|U |(G/U −N/U)

using Result 1.10. We conclude from (2) that ρ(R) is an (m, n
|U | , k, λ|U |) relative

difference set in G/U relative to N/U .

Example 1.12 (Projection of general difference set)
Let D be a (v, k, λ) difference set in a group G, let U be a normal subgroup of

G, and let ρ : G → G/U be the canonical projection. Apply ρ to both sides of (1)
and use Result 1.10 to obtain in Z[G/U ] that

ρ(D)ρ(D)(−1) = ρ((k − λ) · 1G) + λρ(G)

= (k − λ) · 1G/U + λ|U |G/U
= (k − λ) + λ|U |G/U.

Remark 1.13 In Example 1.9, the coefficients of the projection ρ(A) in the group ring
Z[G/U ] are 1, 3, 1, 1, 1 (whereas in Example 1.11 the corresponding coefficients all
lie in {0, 1}). These are the numbers of elements of A contained in each of the
cosets of U in G, and are called the intersection numbers of A relative to U . The
intersection numbers of a general difference setD relative to a subgroup U must lie
in {0, 1, . . . , |U |}. It is sometimes possible to determine congruence relations that
must also be satisfied by the intersection numbers (for example, see [1, 4]).

A common technique for studying the existence of a difference set D in a group
G is to fix a subgroup U and determine (or constrain) its possible projections ρ(D)
computationally or theoretically. If there are no such projections, then the assumed
difference set cannot exist. Otherwise, one “lifts” each possible projection ρ(D)
from G/U to G, testing whether at least one of the resulting pre-imagesD in G is a
difference set.

We now place the group ring expression A(−1) in a more general setting. Let
A =

∑
g∈G agg be an element of the group ring Z[G], and let t be an integer. Then

A(t) is the element
∑
g∈G agg

t of Z[G]. (The expression A(t) is not to be confused
with the product At of t copies of A in Z[G].) In the case that G is abelian, we
may regard the expression A(t) as extending the group homomorphism σt : g 7→ gt

in Hom(G) to the group ring Z[G], and so write σt(A) = A(t). In particular,
the expression A(−1) may then be regarded as extending the group automorphism
σ−1 : g 7→ g−1 in Aut(G) to Z[G].

Example 1.14 (Numerical multiplier of difference set)
Consider the (15, 7, 3) difference set A = {g, g2, g3, g5, g6, g9, g11} in G =

Z15 = 〈g〉 given in Example 1.5. Let σ2 : Z15 → Z15 be the group automorphism
given by σ2(g) = g2. Then

{σ2(x) | x ∈ A} = {g2, g4, g6, g10, g12, g3, g7} = {gx | x ∈ A},
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so σ2 maps A to a translate of A. The integer 2 is called a numerical multiplier of
the difference set A. In group ring notation, this is equivalent to A(2) = gA.

In general, let D be a difference set in an abelian group G and let t be an integer
coprime to |G|. Then t induces a group automorphism σt : x 7→ xt in Aut(G), so
that σt(D) = D(t), and t is a numerical multiplier of D if

D(t) = hD for some h ∈ G.

Remark 1.15 A collection of results known as the Multiplier Theorems gives suf-
ficient conditions for an assumed difference set in an abelian group G to admit a
numerical multiplier t. It is striking that these conditions depend only on the param-
eters (v, k, λ), and not on the form ofG. The Multiplier Theorems have been widely
used in constructive and nonexistence results for difference sets [10].

2 Character sums

In this section, we introduce character theory and show how it can be fruitfully
applied in conjunction with the group ring formulation of Section 1. We consider
only finite abelian groups.

The exponent of a groupG, written exp(G), is the smallest positive integer n such
that gn = 1G for each g ∈ G. A character χ of a groupG is a group homomorphism
from G to the multiplicative group of the complex field C.

Let the group G have exponent n and let χ be a character of G. For each g ∈ G
we have

χ(g)n = χ(gn) = χ(1G) = 1,

where the first and third equalities hold because χ is a group homomorphism, and
the second holds because exp(G) = n. Therefore each χ(g) is an n-th root of unity.
Writing ζn = e2πi/n, we see that the range of χ is the multiplicative group 〈ζn〉.

There are two main approaches for describing the set of all characters of an
elementary abelian group, one using the dot product and the other using the trace
function. We shall illustrate these two approaches by reference to the group (Z4

2,+)
in Examples 2.1 and 2.2.

Example 2.1 (Dot product)
Let G = (Z4

2,+). For each a = (a1, a2, a3, a4) ∈ G, define the function χa :
G→ {−1, 1} by

χa(x) = (−1)a1x1+a2x2+a3x3+a4x4 = (−1)a·x for each x = (x1, x2, x3, x4) ∈ G,

where a · x is the usual dot product. It is straightforward to check that χa(x+ y) =
χa(x)χa(y) for all a, x, y ∈ G, and so the function χa is a character of G for each
a ∈ G.

We next show that the set Ĝ = {χa | a ∈ G} comprises all the characters
of G. Since exp(G) = 2, a character χ of G is a group homomorphism from G
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to 〈ζ2〉 = {−1, 1}. The character χ is completely determined by the sequence of
character values(

χ((0, 0, 0, 1)), χ((0, 0, 1, 0)), χ((0, 1, 0, 0)), χ((1, 0, 0, 0))
)

belonging to {−1, 1}4. Since each element of {−1, 1}4 corresponds to a different
character, there are exactly 24 characters χ of G. Since |Ĝ| = 24 (because χa 6= χb
for a 6= b), the set Ĝ comprises all the characters of G.

The identity ofG is 1G = (0, 0, 0, 0), and the characterχ1G maps each element of
G to 1. This character is called the principal character of G, and all other characters
are called nonprincipal. Define an operation ◦ on Ĝ by

χa ◦ χb = χa+b for each a, b ∈ G, (5)

where the addition a + b takes place in G. Then it is easily verified that (Ĝ, ◦)
is a group with identity χ1G because (G,+) is a group with identity 1G. Since a
character is a homomorphism, it follows from (5) that

(ϕ ◦ θ)(g) = ϕ(g)θ(g) for each g ∈ G and each ϕ, θ ∈ Ĝ.

We now show that G ∼= Ĝ. Define a mapping ψ : G → Ĝ by ψ(a) = χa for
each a ∈ G. Since ψ is injective and surjective, and ψ(a+ b) = ψ(a) ◦ ψ(b) for all
a, b ∈ G by (5), the mapping ψ is a group isomorphism.

Example 2.2 (Trace function)
LetG = (Z4

2,+), as in Example 2.1. We shall now regardG as the additive group
of the finite field F16 and use the trace function Tr : F16 → F2 given by

Tr(x) = x+ x2 + x4 + x8 for each x ∈ F16

to describe all the characters of G.
For each a ∈ F16, define the function χa : F16 → {−1, 1} by

χa(x) = (−1)Tr(ax) for each x ∈ F16.

It is straightforward to check that χa(x + y) = χa(x)χa(y) for all a, x, y ∈ F16.
Regarding G as the additive group of F16, we may consider each function χa to be
a character of G and the index a to be an element of G.

Using identical arguments to those in Example 2.1, the set Ĝ = {χa | a ∈ G}
comprises all the characters of G, and (Ĝ, ◦) (where ◦ is defined as in (5)) is a
group whose identity is the principal character χ1G , and the groups G and Ĝ are
isomorphic.

The trace function approach of Example 2.2 for characters of an abelian group ap-
plies only when the group is elementary abelian. However, the dot product approach
of Example 2.1 can be extended to all abelian groups, as we now show.
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Definition 2.3 Let G = Zn1
× Zn2

× · · · × Znt
and let n = exp(G) =

lcm(n1, n2, . . . , nt). For each a = (a1, a2, . . . , at) ∈ G, let χa : G → 〈ζn〉 be
the function given by

χa(x) = (ζa1n1
)x1(ζa2n2

)x2 . . . (ζatnt
)xt for each x = (x1, x2, . . . , xt) ∈ G.

It is straightforward to check that χa(x+ y) = χa(x)χa(y) for all a, x, y ∈ G, and
so the function χa is a character of G for each a ∈ G. The principal character χ1G

maps each element of G to 1, and all other characters are nonprincipal. Define the
operation ◦ as in (5). Using trivial modifications to the arguments in Example 2.1,
the set Ĝ = {χa | a ∈ G} comprises all

∏
i ni characters of G, and the character

group (Ĝ, ◦) of G is a group whose identity is χ1G , and the groups G and Ĝ are
isomorphic.

Remark 2.4 Let G be a group and let g ∈ G. Then

χ(g) = 1 for all χ ∈ Ĝ =⇒ g = 1G,

because the contrapositive follows from Definition 2.3.

Example 2.5 (Character calculation) Let G = Z4 × Z8. Then we calculate

χ(3,1)(2, 7) = (ζ34 )
2(ζ18 )

7 = ζ38 .

In multiplicative notation we instead write G = Z4 × Z8 = 〈x, y〉. The character
χ(3,1) is now written as χx3y , which acts on the generators of G according to

χx3y(x) = ζ34 and χx3y(y) = ζ18 ,

and so χx3y(x
2y7) = (ζ34 )

2(ζ18 )
7 = ζ38 .

We now illustrate how character theory is a crucial tool in the study of difference
sets and their variants. Let G be a group having exponent n, let χ ∈ Ĝ, and let
A =

∑
g∈G agg ∈ Z[G]. The character sum of χ on A is

χ(A) =
∑
g∈G

agχ(g),

which is a sum of n-th roots of unity. LetN be a subgroup ofG. A character χ ∈ Ĝ
is principal on N if χ(g) = 1 for all g ∈ N (and so a character χ ∈ Ĝ is principal
on G if and only if χ = χ1G ). We write

N⊥ = {χ ∈ Ĝ | χ is principal on N}.

It is straightforward to verify that N⊥ is a subgroup of (Ĝ, ◦). If N1 is a subgroup
ofN2 in a groupG, thenN⊥2 is a subgroup ofN⊥1 in Ĝ. The subgroupG⊥ contains
only the principal character 1G.
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In Examples 2.6 to 2.8, we demonstrate that the character sums of the objects
studied in Examples 1.5 to 1.7 each have strikingly regular properties; after devel-
oping the necessary theory, we shall explain in Theorems 2.15 to 2.17 how these
properties arise.

Example 2.6 (Character viewpoint for difference set)
Consider the (15, 7, 3) difference set A = g + g2 + g3 + g5 + g6 + g9 + g11 in

G = Z15 = 〈g〉 given in Example 1.5. Then the character sum of the character χ on
A is

χ(A) = χ(g) + χ(g2) + χ(g3) + χ(g5) + χ(g6) + χ(g9) + χ(g11).

The following table shows that as χ ranges over the nonprincipal characters
χg, χg2 , . . . , χg14 of G, the value of χ(A) varies:

character χ character sum χ(A)
χg ζ15 + ζ215 + ζ315 + ζ515 + ζ615 + ζ915 + ζ1115
χg2 ζ215 + ζ315 + ζ415 + ζ615 + ζ715 + ζ1015 + ζ1215
χg3 2ζ315
χg4 ζ415 + ζ515 + ζ615 + ζ815 + ζ915 + ζ1215 + ζ1415
χg5 −2ζ515
χg6 2ζ615
χg7 ζ215 + ζ315 + ζ515 + ζ615 + ζ715 + ζ1215 + ζ1415
χg8 ζ15 + ζ315 + ζ815 + ζ915 + ζ1015 + ζ1215 + ζ1315
χg9 2ζ915
χg10 −2ζ1015
χg11 ζ15 + ζ315 + ζ615 + ζ715 + ζ915 + ζ1015 + ζ1115
χg12 2ζ1215
χg13 ζ315 + ζ515 + ζ815 + ζ915 + ζ1115 + ζ1215 + ζ1315
χg14 ζ415 + ζ615 + ζ915 + ζ1015 + ζ1215 + ζ1315 + ζ1415

However, direct calculation shows that |χ(A)|2 is invariant:

|χ(A)|2 = 4 for all nonprincipal characters χ of G.

Example 2.7 (Character viewpoint for relative difference set)
Consider the (4, 4, 4, 1) relative difference set B = 1 + a + b + a3b3 in G =

Z4 × Z4 = 〈a, b〉 relative to the subgroup N = 〈a2, b2〉 ∼= Z2 × Z2 given in
Example 1.6. Asχ ranges over the nonprincipal characters ofG, the value of |χ(B)|2
depends only on whether χ is principal on N :

|χ(B)|2 =

{
0 for all χ ∈ N⊥ \G⊥,
4 for all χ /∈ N⊥.

Example 2.8 (Character viewpoint for partial difference set)
Consider the (9, 4, 1, 2) partial difference set C = x + x2 + xy + x2y2 in

G = Z3 × Z3 = 〈x, y〉 given in Example 1.7. As χ ranges over the nonprincipal
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characters of G, the value χ(C) is real and takes only two possible values:

χ(C) ∈ {1,−2} for all nonprincipal characters χ of G.

We now introduce the results required to explain the properties illustrated in
Examples 2.6 to 2.8.

Lemma 2.9 Let G be a group, let A,B ∈ Z[G], let exp(G) = n, and let t be an
integer. Define the function σ̃t : Z[ζn]→ Z[ζn] by σ̃t

(∑
i aiζ

i
n

)
=
∑
i aiζ

ti
n . Then

(i) χ(AB) = χ(A)χ(B)

(ii) χ(A(−1)) = χ(A)

(iii) χ(A(t)) = σ̃t
(
χ(A)

)
.

Proof Since χ is a homomorphism, (i) holds.
For (ii), let A =

∑
g∈G agg. Then

χ(A(−1)) = χ
(∑
g∈G

agg
−1
)
=
∑
g∈G

agχ(g
−1).

Now for all g ∈ G, we have χ(g)χ(g−1) = χ(gg−1) = χ(1G) = 1 = χ(g)χ(g)
because χ(g) is a root of unity, and by cancelling χ(g) we obtain χ(g−1) = χ(g).
Therefore

χ(A(−1)) =
∑
g∈G

agχ(g) = χ
(∑
g∈G

agg
)
= χ(A).

The proof of (iii) is similar to that of (ii) (and reduces to (ii) in the special case
t = −1). �

Result 2.10 (Induced character [11, Theorem 17.3])
Let N be a subgroup of a group G. Each character χ ∈ N⊥ induces a character

χ̃ in Ĝ/N for which
χ̃(gN) = χ(g) for all g ∈ G,

and the mapping χ 7→ χ̃ is a bijection from N⊥ to Ĝ/N .

Recall that we defined N⊥ from N as

N⊥ = {χ ∈ Ĝ | χ(g) = 1 for all g ∈ N}.

We now show that we can obtain N from N⊥ in a dual manner.

Proposition 2.11 (Duality)
Let N be a subgroup of a group G. Then

N = {g ∈ G | χ(g) = 1 for all χ ∈ N⊥}.
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Proof The set N is contained in the set on the right side, by definition of N⊥.
To show the reverse containment, suppose that g ∈ G satisfies χ(g) = 1 for all

χ ∈ N⊥. We claim that φ(gN) = 1 for all φ ∈ Ĝ/N , so that by Remark 2.4 we
have gN = 1G/N = N and therefore g ∈ N , as required. To prove the claim, let
φ ∈ Ĝ/N . Then by Result 2.10 we have φ = χ̃ for some χ ∈ N⊥ and φ(gN) =
χ̃(gN) = χ(g) = 1. �

Proposition 2.12 (Orthogonality relations for characters)
Let N be a subgroup of a group G.

(i) For all χ ∈ Ĝ,

χ(N) =

{
|N | if χ ∈ N⊥,
0 if χ /∈ N⊥.

(ii) For all g ∈ G, ∑
χ∈N⊥

χ(g) =

{
|G|
|N | if g ∈ N ,
0 if g /∈ N.

Proof

(i) In the case that χ ∈ N⊥, we have χ(g) = 1 for all g ∈ N and so χ(N) = |N |.
In the case that χ /∈ N⊥, there is an element g ∈ N for which χ(g) 6= 1.
Since N = gN , we have χ(N) = χ(gN) = χ(g)χ(N). Therefore

(
1 −

χ(g)
)
χ(N) = 0, and so χ(N) = 0 because χ(g) 6= 1.

(ii) In the case that g ∈ N , we have χ(g) = 1 for all χ ∈ N⊥ and so∑
χ∈N⊥ χ(g) = |N⊥| = |Ĝ/N | using Result 2.10, which equals |G||N | be-

cause Ĝ/N ∼= G/N .
In the case that g /∈ N , by Proposition 2.11 we have φ(g) 6= 1 for some
φ ∈ N⊥. Therefore

φ(g)
∑
χ∈N⊥

χ(g) =
∑
χ∈N⊥

φ(g)χ(g) =
∑
χ∈N⊥

(φ ◦ χ)(g) =
∑
χ∈N⊥

χ(g),

where the last equality holds because N⊥ is a subgroup of Ĝ and φ ∈ N⊥.
Therefore

(
φ(g) − 1

)∑
χ∈N⊥ χ(g) = 0, so

∑
χ∈N⊥ χ(g) = 0 because

φ(g) 6= 1. �

We now use the orthogonality relations for characters to establish the following
inversion formula.

Proposition 2.13 (Fourier inversion formula)
Let G be a group and let A =

∑
g∈G agg ∈ Z[G]. Then

ag =
1

|G|
∑
χ∈Ĝ

χ(A)χ(g−1) for each g ∈ G.
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Proof For each g ∈ G, we have∑
χ∈Ĝ

χ(A)χ(g−1) =
∑
χ∈Ĝ

χ
(∑
h∈G

ahh
)
χ(g−1) =

∑
χ∈Ĝ

∑
h∈G

ahχ(hg
−1)

=
∑
h∈G

ah
∑
χ∈Ĝ

χ(hg−1) = ag|G|

by Proposition 2.12(ii) with N = {1G}. �

Proposition 2.13 shows that a group ring element A ∈ Z[G] is completely deter-
mined by the values of χ(A) as χ ranges over Ĝ.

Corollary 2.14 Let A,B ∈ Z[G]. Then

(i) A = B if and only if χ(A) = χ(B) for all characters χ of G.

(ii) A(−1) = A if and only if χ(A) is real for all nonprincipal characters χ of G.

Proof For part (i), use Proposition 2.13.
For part (ii), note that χ1G(A) is always an integer and so χ(A) is real for all

nonprincipal characters χ of G if and only if χ(A) is real for all characters χ of G.
Then use Proposition 2.13 and Lemma 2.9(ii). �

We now have the necessary tools to explain how the character sum properties
illustrated in Examples 2.6 to 2.8 arise.

Theorem 2.15 Let G be a group of order v, let D be a k-subset of G, and let λ
satisfy k(k − 1) = λ(v − 1). Then the subset D is a (v, k, λ) difference set in G if
and only if

|χ(D)|2 = k − λ for all nonprincipal characters χ of G. (6)

Proof As seen in Example 1.5, the subset D is a (v, k, λ) difference set in G if and
only if

DD(−1) = k + λ(G− 1) in Z[G]. (7)

By Lemma 2.9, we have χ(DD(−1)) = χ(D)χ(D(−1)) = χ(D)χ(D) = |χ(D)|2,
so using Corollary 2.14(i) we find that (7) is equivalent to

|χ(D)|2 = χ
(
k + λ(G− 1)

)
for all characters χ of G. (8)

Now χ
(
k + λ(G − 1)

)
= χ

(
(k − λ) · 1G + λG

)
= (k − λ) + λχ(G), so by

Proposition 2.12(i) we have that (8) is equivalent to

|χ(D)|2 =

{
k − λ+ λv for χ = χ1G ,

k − λ for all nonprincipal characters χ of G.
(9)

SinceD is a k-subset and k(k−1) = λ(v−1) by assumption, we have |χ1G(D)|2 =
k2 = k − λ+ λv, so (9) is equivalent to
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|χ(D)|2 = k − λ for all nonprincipal characters χ of G.

Theorem 2.16 Let G be a group of ordermn, let N be a subgroup of G of order n,
let R be a k-subset of G, and let λ satisfy k(k − 1) = λn(m− 1). Then the subset
R is an (m,n, k, λ) relative difference set in G relative to N if and only if

|χ(R)|2 =

{
k − λn for all χ ∈ N⊥ \G⊥,
k for all χ /∈ N⊥.

(10)

Proof As seen in Example 1.6, the subsetR is an (m,n, k, λ) relative difference set
in G relative to N if and only if

RR(−1) = k + λ(G−N) in Z[G].

By Lemma 2.9 and Corollary 2.14(i), this is equivalent to

|χ(R)|2 = k + λ
(
χ(G)− χ(N)

)
for all characters χ of G,

which by Proposition 2.12(i) is equivalent to

|χ(R)|2 =


k + λn(m− 1) for χ = χ1G ,

k − λn for all χ ∈ N⊥ \G⊥,
k for all χ /∈ N⊥.

SinceR is ak-subset andk(k−1) = λn(m−1) by assumption,we have |χ1G(R)|2 =
k2 = k + λn(m− 1) and so obtained the desired result. �

Theorem 2.17 Let G be a group of order v, let D be a k-subset of G not contain-
ing 1G, and let λ, µ satisfy k(k−1) = λk+µ(v−1−k) and (λ−µ)2+4(k−µ) ≥ 0.
Then the subset D is a (v, k, λ, µ) partial difference set in G satisfying D(−1) = D
if and only if

χ(D) =
1

2

(
λ−µ±

√
(λ− µ)2 + 4(k − µ)

)
for all nonprincipal characters χ of G.

(11)

Proof Since (λ − µ)2 + 4(k − µ) ≥ 0 by assumption, (11) implies that χ(D) is
real for all nonprincipal characters χ of G and therefore by Corollary 2.14(ii) that
D(−1) = D. We may therefore take D(−1) = D to be an assumption applying
throughout the statement of the theorem.

As seen in Example 1.7, the subset D is a (v, k, λ, µ) partial difference set in G
if and only if

DD(−1) = k + λD + µ(G− 1−D) in Z[G].

Using D(−1) = D, this is equivalent to
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D2 = k + λD + µ(G− 1−D) in Z[G],

which by Corollary 2.14(i) and Lemma 2.9(i) is equivalent to(
χ(D)

)2
= k − µ+ (λ− µ)χ(D) + µχ(G) for all characters χ of G.

Using Proposition 2.12(i), this is equivalent to

(
χ(D)

)2
=

{
k + λk + µ(v − 1− k) for χ = χ1G ,

k − µ+ (λ− µ)χ(D) for all nonprincipal characters χ of G.
(12)

Since k(k − 1) = λk + µ(v − 1− k) by assumption, we have
(
χ1G(D)

)2
= k2 =

k + λk + µ(v − 1− k), so (12) is equivalent to(
χ(D)

)2
= k − µ+ (λ− µ)χ(D) for all nonprincipal characters χ of G.

This is equivalent to (11), by considering the solutions of the above quadratic equation
in χ(D) for each χ. �

Remark 2.18 Each character sum of a difference setD or relative difference set R is
a sumX ofm-th roots of unity for some integerm, and therefore an algebraic integer
in Z[ζm]. Theorems 2.15 and 2.16 characterizeD andR by constraining the value of
XX to be an integer, enabling powerful methods from algebraic number theory to
be applied to analyze the existence of (relative) difference sets. This technique was
pioneered by Turyn [32], significantly extended by Schmidt [29, 30] using the field
descent method, and further developed by Leung and Schmidt [20].

Remark 2.19 The character descriptions (6), (10), (11) in Theorems 2.15, 2.16, 2.17
do not imply that the associated group ring element has coefficients in {0, 1}. For
this reason, we must include as an assumption in the theorems that we begin with a
k-subset.

Remark 2.20 The parameter relations k(k−1) = λ(v−1) and k(k−1) = λn(m−1)
and k(k − 1) = λk + µ(v − 1− k) given as assumptions in Theorems 2.15 to 2.17
are the same as the counting relations described in Examples 1.5 to 1.7, respectively.
Including these relations as assumptions in Theorems 2.15 to 2.17 allows us to
simplify the statement of the theorems to refer only to nonprincipal characters.

We next use character theory to analyze the condition that a difference set admits
a numerical multiplier.

Example 2.21 (Character viewpoint for numerical multiplier) Suppose that t is a
numerical multiplier of a difference setD in an abelian groupG. We shall show that
this assumption imposes strong structural constraints on D, or equivalently on its
character sums.

The right translate ofD by a group element g ∈ G isD+ g = {d+ g | d ∈ D}.
As seen in Example 1.14, the integer t induces a group automorphism σt : x 7→ xt
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in Aut(G), and σt(D) = D(t). There is necessarily a right translate of D that is
fixed by σt [2, Chapter VI, Theorem 2.6]. Since the right translate of a difference set
is also a difference set with the same parameters, we may assume that

D(t) = D in Z[G]. (13)

Therefore D is necessarily formed as a union of orbits under the action of σt, and
this property can often be used to construct an example of such a difference set D
or else to show that it cannot exist.

By Corollary 2.14(i) and Lemma 2.9(iii) (and the definition of σ̃t given in
Lemma 2.9), (13) is equivalent to

σ̃t
(
χ(D)

)
= χ(D) for all characters χ of G,

which constrains all the character sums of D to be fixed by σ̃t.

Remark 2.22 The set of right translates of a difference set in an abelian group G is
important in design theory: it forms the block set of a symmetric balanced incomplete
block design with a regular automorphism group G [31, Theorem 3.8].

We conclude this section by showing that the Walsh-Hadamard transform oc-
curring in the study of Boolean functions can be expressed in terms of character
sums.

Example 2.23 (Boolean functions and Walsh-Hadamard transform) Let n be a pos-
itive integer. A Boolean function in n variables is a function f : Fn2 → F2. The
Walsh-Hadamard transform of a Boolean function f at a ∈ Fn2 is

χ̂f (a) =
∑
x∈Fn

2

(−1)f(x)+a·x,

where a · x is the usual dot product. A Boolean function f in n variables is bent if
its Walsh-Hadamard transform satisfies

χ̂f (a) ∈ {−2
n
2 , 2

n
2 } for each a ∈ Fn2 .

A bent function has the largest possible distance from the set of all linear functions.
See [3] for a comprehensive treatment of Boolean functions, bent functions, and
their applications.

A Boolean function f : Fn2 → F2 can be associated with the group ring element
Df ∈ Z[Fn2 ] given by

Df =
∑

x∈Fn
2 : f(x)=1

x.

The group ring elementDf retains all information about f . We use |Df | to represent
the size of the subset of Fn2 associated with Df . By replacing f with 1 + f if
necessary, we may assume that
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|Df | ≤ 2n−1. (14)

We connect the Walsh-Hadamard transform of f to the character sums of Df in the
following way:

χ̂f (a) =
∑
x∈Fn

2

(−1)f(x)+a·x

=
∑

x∈Fn
2 : f(x)=0

(−1)a·x −
∑

x∈Fn
2 : f(x)=1

(−1)a·x

=
∑
x∈Fn

2

(−1)a·x − 2
∑

x∈Fn
2 : f(x)=1

(−1)a·x

= χa(Fn2 )− 2χa(Df ), (15)

where χa is a character of the additive group Zn2 of Fn2 , defined as in Example 2.1.
Now χa is the principal character of Zn2 exactly when a is zero in Fn2 , so by

Proposition 2.12(i) we have

χa(Fn2 ) =

{
2n if a is zero in Fn2
0 if a is nonzero in Fn2

Substitution in (15) then gives

χ̂f (a) =

{
2n − 2|Df | if a is zero in Fn2
−2χa(Df ) if a is nonzero in Fn2 .

We then see that the Walsh-Hadamard transforms of f can be expressed in terms
of the character sums of Df . In particular, under the assumption (14), the Boolean
function f : Fn2 → F2 is a bent function if and only if

|Df | = 2n−1 − 2
n
2−1 and |χa(Df )| = 2

n
2−1 for each nonzero a ∈ Fn2 .

By Theorem 2.15, this is in turn equivalent to the statement thatDf is a (2n, 2n−1−
2

n
2−1, 2n−2 − 2

n
2−1) difference set in Fn2 .

3 Collections of subsets

In this section, we consider certain collections of subsets of an abelian group whose
mutual properties play a fundamental role in the construction of difference sets
and related structures. These collections are: the hyperplanes of an elementary
abelian group; a spread of an elementary abelian group; and an LP-packing of
partial difference sets in an abelian group. We characterize each collection using
character sums.
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Example 3.1 (Hyperplanes of elementary abelian group)
LetG = Znp and let a·x be the usual dot product of a and x inG. The hyperplanes

of G are the pn − 1 subgroups

Ha = {x ∈ G | a · x = 0}

as a ranges over the nonidentity elements of G. The order p cyclic subgroup of G
generated by nonidentity a ∈ G is

〈a〉 = {γa | γ ∈ Zp}.

Regarding G as an n-dimensional vector space over Zp, the hyperplanes are the
(n − 1)-dimensional subspaces of G and 〈a〉 is the set of scalar multiples of a.
The hyperplanes of an elementary abelian group are a crucial ingredient in the
construction of McFarland difference sets [7, 23], and in the construction of other
families of (v, k, λ) difference sets satisfying gcd(v, k − λ) 6= 1 as well as certain
families of relative difference sets [5].

Let H̃a be the orthogonal complement ofHa inG (where we reserve the symbol⊥

for the set of characters principal on a subgroup). Since 〈a〉 ⊆ H̃a and dim(H̃a) = 1,
we see that H̃a = 〈a〉. Therefore

Ha = Hb if and only if 〈a〉 = 〈b〉. (16)

By Definition 2.3, the characters of G are the functions χc for c ∈ G, where

χc(x) = ζc·xp for each x ∈ G.

Therefore

H⊥a = {χc | c · x = 0 for all x ∈ Ha} = {χc | c ∈ H̃a} = {χc | c ∈ 〈a〉},

using H̃a = 〈a〉. It follows from Proposition 2.12(i) that for each c ∈ G and each
nonidentity a ∈ G,

χc(Ha) =

{
pn−1 if c ∈ 〈a〉,
0 if c /∈ 〈a〉.

(17)

Using (16), this shows that each nonprincipal character of G is principal on exactly
one hyperplane.

Using H̃a = 〈a〉 again, we can rewrite (17) as

χc(Ha) =

{
pn−1 if c ∈ H̃a,

0 if c /∈ H̃a

and thereby associate the nonprincipal characters ofGwith the (orthogonal comple-
ments of the) hyperplanes of G.

Finally, we claim that
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HaHb =

{
pn−1Ha if Ha = Hb,
pn−2G if Ha 6= Hb.

(18)

The case Ha = Hb of (18) holds because Ha is a subgroup of G of order pn−1,
and hHa = Ha for each h ∈ Ha. For the case Ha 6= Hb of (18), let c ∈ G. By
Lemma 2.9(i) and (16) and (17),

χc(HaHb) =

{
pn−1 · pn−1 if c = 1G,
0 if c 6= 1G

= χc(p
n−2G)

using Proposition 2.12(i). Since this holds for all χc ∈ Ĝ, by Corollary 2.14(i) we
obtain HaHb = pn−2G for Ha 6= Hb as required.

Example 3.2 (Spread of elementary abelian group)LetG = Z2n
p , and letH0, H1, . . . ,

Hpn be a collection of order pn subgroups of G. The subgroups H0, H1, . . . ,Hpn

form a spread in G if

Hi ∩Hj = {1G} for all distinct i, j. (19)

That is, every two distinct subgroups of a spread intersect only in the identity element.
A spread of an elementary abelian group occurs in many contexts of coding theory,
design theory, and finite geometry [6, 13].

By a counting argument, (19) is equivalent to the group ring condition

pn∑
i=0

Hi = pn +G in Z[G]. (20)

By Corollary 2.14(i) and Proposition 2.12(i), condition (20) is equivalent to

pn∑
i=0

χ(Hi) = pn for all nonprincipal characters χ of G. (21)

By Proposition 2.12(i), we have χ(Hi) ∈ {0, pn} for each i and so (21) is equivalent
to the multiset equality

{{χ(H0), χ(H1), . . . , χ(Hpn)}} = {{pn, 0, . . . , 0}}
for all nonprincipal characters χ of G. (22)

Therefore each nonprincipal character ofG is principal on exactly one of the pn+1
subgroups of a spread in G. (From Example 3.1, the hyperplanes of Z2n

p have the
similar property that each nonprincipal character of Z2n

p is principal on exactly one
of the p2n−1

p−1 hyperplanes; but every two distinct hyperplanes of G = Z2n
p intersect
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in a (2n− 2)-dimensional subspace, whereas the subgroups of a spread intersect in
only the identity element.)

Suppose that H0, H1, . . . ,Hpn is a spread in G. Each H⊥i is a subgroup of Ĝ,
which by Result 2.10 has order |H⊥i | =

|G|
|Hi| = pn. By (22), we have H⊥i ∩H⊥j =

{χ1G} for all distinct i, j. Therefore the collectionH⊥0 , H⊥1 , . . . ,H⊥pn is a spread in
Ĝ that is dual to the spread H0, H1, . . . ,Hpn in G.

Example 3.3 (LP-packing of partial difference sets in abelian group) Let t > 1 and
c > 0 be integers. Let G be an abelian group of order t2c2, and let U be a subgroup
of G of order tc. Let P1, . . . , Pt be a collection of c(tc − 1)-subsets of G not
containing 1G. The subsetsP1, . . . , Pt form a (c, t) LP-packing inG relative toU (as
introduced in [12], where “LP-packing” is shorthand for “a packing of Latin square
type Partial difference sets”) if each Pi is a (t2c2, c(tc− 1), c(t+ c− 3), c(c− 1))

partial difference set in G satisfying P (−1)
i = Pi, and

t∑
i=1

Pi = G− U. (23)

Since each Pi is a c(tc− 1)-subset of G and |G \U | = tc(tc− 1), condition (23) is
equivalent to the statement that the subsets Pi are disjoint and their union is G \ U .

We now use character sums to characterize a (c, t) LP-packing. By Theorem 2.17,
the condition that eachPi is a (t2c2, c(tc−1), c(t+c−3), c(c−1)) partial difference
set in G satisfying P (−1)

i = Pi is equivalent to

χ(Pi) ∈ {−c, (t− 1)c} for each i and for all nonprincipal characters χ of G.
(24)

ByCorollary 2.14(i) and Proposition 2.12(i) and the given values of |Pi| and |G\U |,
condition (23) is equivalent to

t∑
i=1

χ(Pi) =

{
−tc for all χ ∈ U⊥ \G⊥,
0 for all χ /∈ U⊥.

(25)

Conditions (24) and (25) are equivalent to the multiset equality

{{χ(P1), . . . , χ(Pt)}} =

{
{{−c, . . . ,−c}} for all χ ∈ U⊥ \G⊥,
{{(t− 1)c,−c, . . . ,−c}} for all χ /∈ U⊥,

(26)
which is therefore a necessary and sufficient condition for the subsets P1, . . . , Pt to
form a (c, t) LP-packing.

Whereas a spread can exist only in an elementary abelian group [14, Theorems 3.1,
3.4], an LP-packing can be constructed in various nonelementary abelian groups: for
prime p and positive integers a, s, there is a (p(a−1)s, ps) LP-packing in Z2s

pa relative
to an arbitrary subgroup of order pas [12, Theorem 5.3]. This is significant because
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an LP-packing can be viewed as a generalization of a spread: as we now show, a
simple transformation of a spread in Z2n

p produces a (1, pn) LP-packing.
Suppose thatH0, H1, . . . ,Hpn is a spread inK = Z2n

p . Then by removing χ(H0)
from the left side of (22) we obtain

{{χ(H1), . . . , χ(Hpn)}} =

{
{{0, 0, . . . , 0}} for all χ ∈ H⊥0 \K⊥

{{pn, 0, . . . , 0}} for all χ /∈ H⊥0 .

Therefore

{{χ(H1−1), . . . , χ(Hpn−1)}} =

{
{{−1,−1, . . . ,−1}} for all χ ∈ H⊥0 \K⊥

{{pn − 1,−1, . . . ,−1}} for all χ /∈ H⊥0 ,

and so by (26) the (pn−1)-subsetsH1−1K , . . . ,Hpn−1K ofK (each not containing
1K) form a (1, pn) LP-packing inK relative to H0

∼= Znp .
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